Type Here to Get Search Results !

PHOSPHATE MOBILIZATION BY ADDITION OF ORGANIC ACIDS IN TWO SOILS OF THE SOUTHERN GUINEA SAVANNA OF NIGRIA

CHAPTER ONE
 INTRODUCTION 

Phosphorus (P) is an important plant nutrient and the reactions of phosphate with soil components have been extensively studied from the point of view of soil fertility, soil chemistry and environmental concerns (Parfit, 1978; Sanyal and De Datta, 1991; Hue et al., 1994; Wang et al., 2007). In tropical and subtropical acidic soils, low P availability becomes one of the limiting factors for plant growth; at the other extreme, accumulation of soil available P has negatively affected water quality (Sharpley, 1995). The misapplication of phosphate fertilizers usually causes eutrophication of water bodies, unbalanced plant nutrition and low P utilization efficiency. When soil phosphate levels are too low, P deficiency in plant represents a major constraint to agricultural production (Palomo et al., 2006). One problem is that P fertilizer can largely be fixed by the oxides, hydroxides and oxyhydroxides of Iron (Fe) and Aluminium (Al) and clay minerals in an acidic soils, which makes it less available or effectively unavailable to plants (Fankem et al., 2006). This is because the availability of both applied and native P is controlled largely by, the sorption and desorption characteristics of the soil. Variable charge minerals are also the major components of most soils of the tropics that affect P unavailability to plants. Such is the case with soils of Nigeria which is dominated by sesquioxides and low activity clays (Bala, 1992). The most likely areas appear to be those dominated by Oxisols, Ultisols and Alfisols. The low amount of total and available P in these soils make investigation into problems associated with phosphorus availability imperative. Already, the widespread occurrence of P deficiency in most arable land in Nigeria has led to the intensive use of P fertilizer. It has been reported that land utilization also influences P sorption capacity (Odunze, 2009). Due to the low solubility and high sorption capacity of P in soil, the supply of phosphate can be a major constrain to plant growth. There is overwhelming evidence, however, to suggest that some plants can directly modify the rhizosphere to gain access to previously unavailable soil P reserves. This can include the deregulation of P membrane transport systems, the manipulation of root hair length or density, the release of phosphates to replace organically bound soil P and the release of organic acid and H+ to solubilize inorganic P (Tinker and Nye, 2000). Researches into management practices to increase phosphate availability in a weathered soil, and at the same time curtail its leaching to contaminate lakes, streams and ground water remains highly imperative. Efficient use and alternative management of phosphate fertilizers are critical to ensure global food production and security (Cordell et al., 2009).The application of combined organic – inorganic inputs has been one management practices suggested to increase P availability in weathered soils (Agbenin and Igbokwe, 2006). Soils contain complex, aromatic, relatively high molecular weight (i.e., > 2000) organic acids such as humic and fulvic acids (Hue et al., 1994). However, structurally simpler organic acids also exist in the soil such as low molecular weight (citric, oxalic, succinic, malic, tartaric acids) C-, H-, and O- containing compounds. These organic acids are characterized by the possession of one or more carboxyl groups (Jones, 1998). Soil organic acids are derived from plant and animal residues, microbial metabolism, canopy drips and rhizosphere activities (Hue et al., 1994; Wang et al., 2007). In a review of organic acid in the rhizosphere, Jones (1998) indicated that typical concentrations of organic acids in the soil ranges from 0.1 – 100 µmol L-1. Although the existence of organic acids in soils is short lived, organic acids may be produced and formed continuously. Hence, organic acids have a very important chemical significance (Jones, 1998) especially for the mobilization of various phosphates in soil (Marschner, 1995). In addition, Jones (2000) and Palomo et al (2006) reported that secretion of organic acids (such as citric, tartaric, oxalic acids e.t.c.) from plant root was the major mechanism for enhancing P availability in soils and hence improving crop yields. The supply of P to plants is also strongly influenced in the rhzosphere by the presence of organic acids (Hue et al., 1994). This introduces the concept that it may be possible to mimic a plant’s release of organic acids by artificially incorporating acids into the soil which would increase P availability in soils with low P status. Citric, tartaric, and tannic acids derived from degradation of humic substances have greater affinity for Al and Fe oxides than phosphate (Violante and Huang, 1989). Thus, these organic acids can compete strongly with P for adsorption sites on Al and Fe oxide systems. In soils with appreciable amounts of these oxides, phosphate sorption will be severely curtailed (Bar-Yosef, 1996). Organic acids/substances can be sorbed to both the external and internal surfaces of the mineral colloids. Fulvic, humic citric and tartaric and acids were reported to be bound to the structural cations of edges and hydroxyl Al and Fe coatings on mineral colloids (Huang, 2004) The uptake of P from soil through root exudation is mostly from various inorganic phosphate. Although the mobilization is very complex, some understanding of the mechanism have been gained. Hinsinger (2001) reported that the solubility of Ca increases with a decreasing pH of the environment due to H+ released of organic acids from plant roots. The cheletion of Fe3+, Al3+ and Ca2+ by organic anions lead to the release of inorganic P bound by these cations (Jones et al., 2003), and organic anions that compete with P adsorption on the surface of soil particles further stimulate the desorption of adsorbed anions (He et al., 1998) Although the competitive adsorption of P and organic ligands by synthetic clay minerals and oxides have been extensively studied (Sibanda and Young, 1986; Kafkafi et al.,1988; Violante and Gianfreda, 1995; Violante et al.,1996), there is a limited information on the fate of P in the presence of organic acids in natural soils (Yuan, 1980; .He et al., 1997). Therefore the exact mechanism among soil inorganic colloids, organic acids and P has not been well- understood. While some detailed studies have been carried out on some soils of the derived savannas of Nigeria especially in terms of P sorption and desorption characteristics, very little attention has been given to the soils of the Southern Guinea part of the Nigeria Savanna (Tsado, 2008). Thus, the need arises for specific studies aimed at understanding the effect of some selected organic acids on phosphate mobilization in these soils. This will facilitate making specific recommendations for P availability to plants with a view to boosting agricultural productivity in the Southern Guinea agro ecology.
Project detailsContents
 
Number of Pages124 pages
Chapter one Introduction
Chapter two Literature review
Chapter three  methodology
Chapter  four  Data analysis
Chapter  five Summary,discussion & recommendations
ReferenceReference
QuestionnaireQuestionnaire
AppendixAppendix
Chapter summary1 to 5 chapters
Available documentPDF and MS-word format


DOWNLOAD COMPLETE WORK 

All  listed topics on our website are available project materials in PDF and MS word files, well supervised and approved by lecturers who are intellectual in their various fields of discipline,  documented to assist you with complete, quality and well organized researched work.  if you can't find what you're looking for feel free to contact us. 

Feel free to contact us chat with us on WhatsApp
Hello, How can I help you? ...
Click me to start the chat...